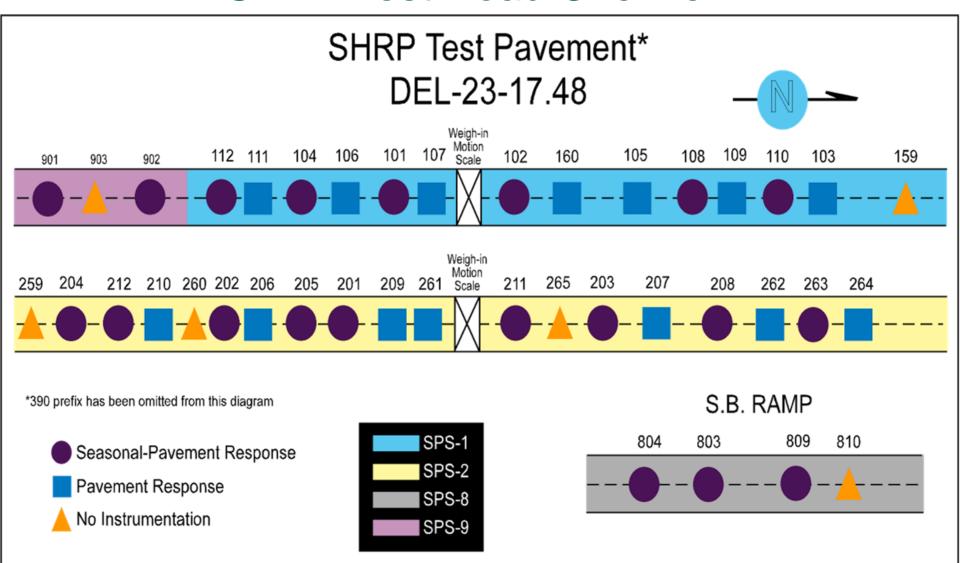
SHRP Test Road Research at Ohio University SPS-2 Tech Day, May 22, 2019 **ODOT District 6 Headquarters, Delaware Shad Sargand**

Ohio Research Institute for Transportation and the Environment Russ College of Engineering and Technology Ohio University, Athens, Ohio

Outline SPS-2 Studies on SHRP Test Road


- Project Instrumentation
- Controlled Load Vehicle Tests
- Monitoring and Performance
- TPI Pooled Fund Study
- Base Type Selection

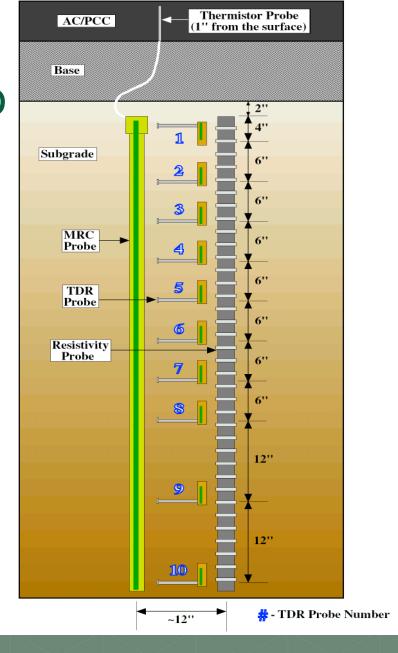
Project Instrumentation

SHRP Test Road Overview

Test Pavement Instrumentation

ODOT Projects to develop and install instrumentation

- Development of an Instrumentation Plan for the Ohio SPS Test Pavement. FHWA/OH-94/019 July, 1994
 - Type of sensors
 - Installation methodology
 - Calibration procedures
 - Wiring schematics
- Coordination of Load Response Instrumentation of SHRP Pavement. FHWA/OH-00/009. May, 1999
 - Coordination of instrumentation installation by six universities (OU, OSU, UT, UC, CWRU, and UA)
 - Controlled load vehicle tests


Environmental Instrumentation

- 20 Sections
 - Monitor soil moisture
 - Monitor soil and pavement temperature
 - Monitor frost depth
 - Monitor ambient weather with Weather Station

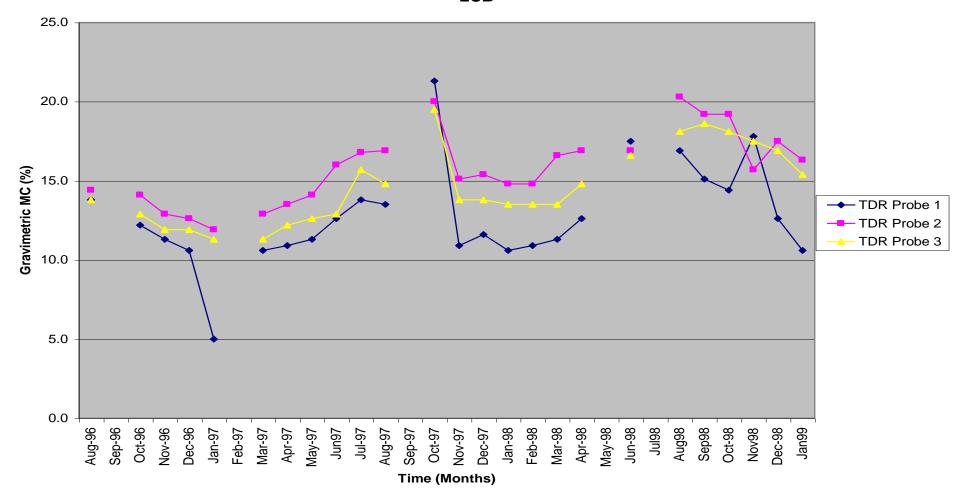
Typical Environmental Instrumentation for Ohio Test Road

- Campbell Scientific FHWA TDR Probes
 - Used to collect soil moisture content
- MRC Thermistor Probes
 - Use to measure pavement, base and subgrade temperature
- CRREL Resistivity Probe
 - Used to measure frost depth in base and subgrade

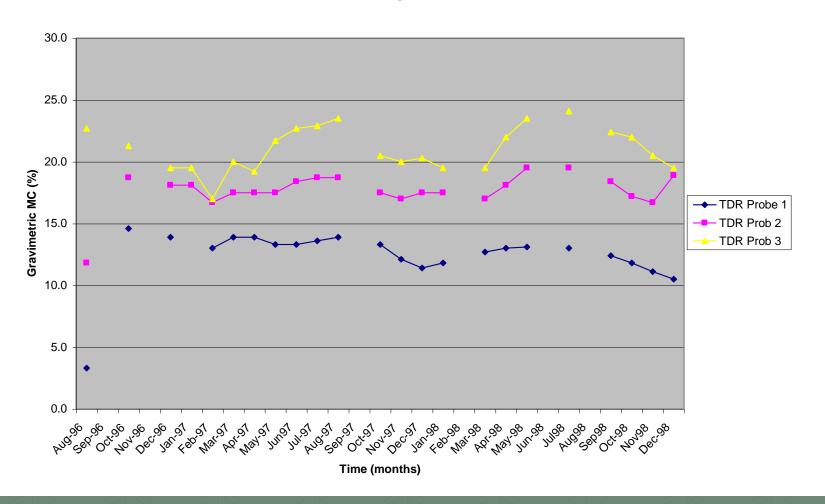
Environmental Instrumentation Installation

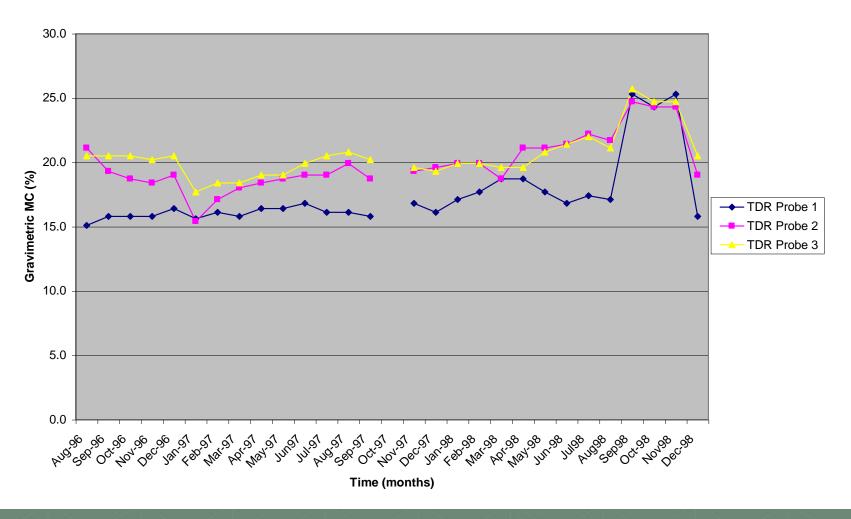
Environmental Instrumentation Installation

Time Domain Reflectometry (TDR) Probe


MRC Thermistor Probe

Typical TDR Data

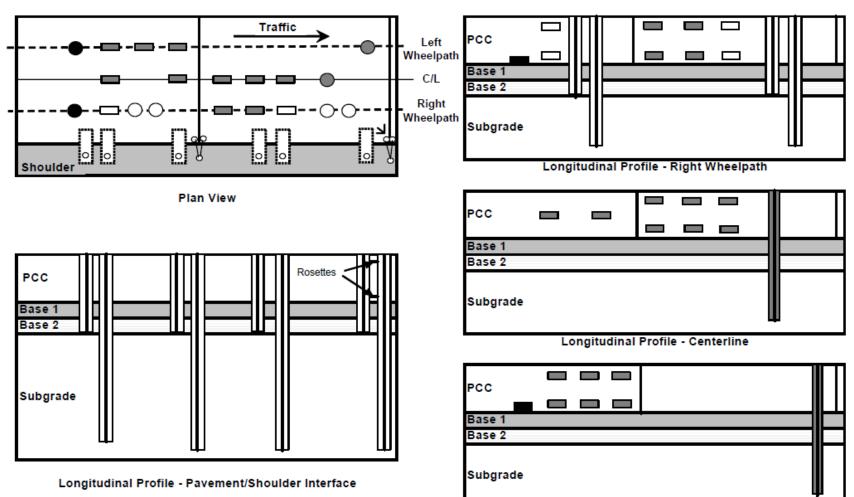

Section 208 LCB


Typical TDR Data

Section 204 DGAB

Typical TDR Data

Section 212 PATB



Pavement Response Sensors

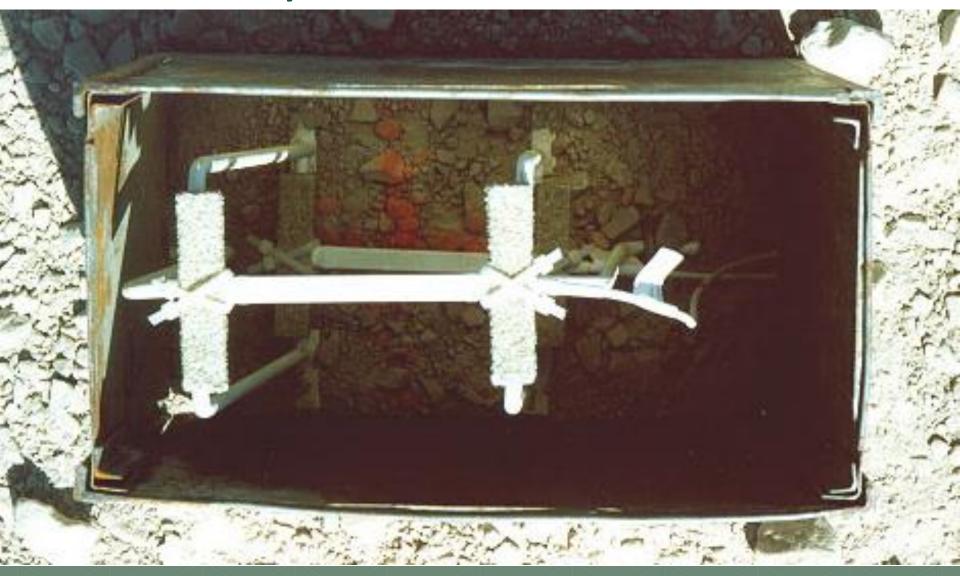
- Dynatest Past II PCC / AC Strain Gauges
- Geokon 3500 Pressure Cells
- Lucas Schaevitz LVDTs
- VCE4200 Geokon vibrating wire strain gauges
- KM100B Tokyo Sokki Strain gauges
- Carlson A-8 Strain meter

Pavement Response Instrumentation

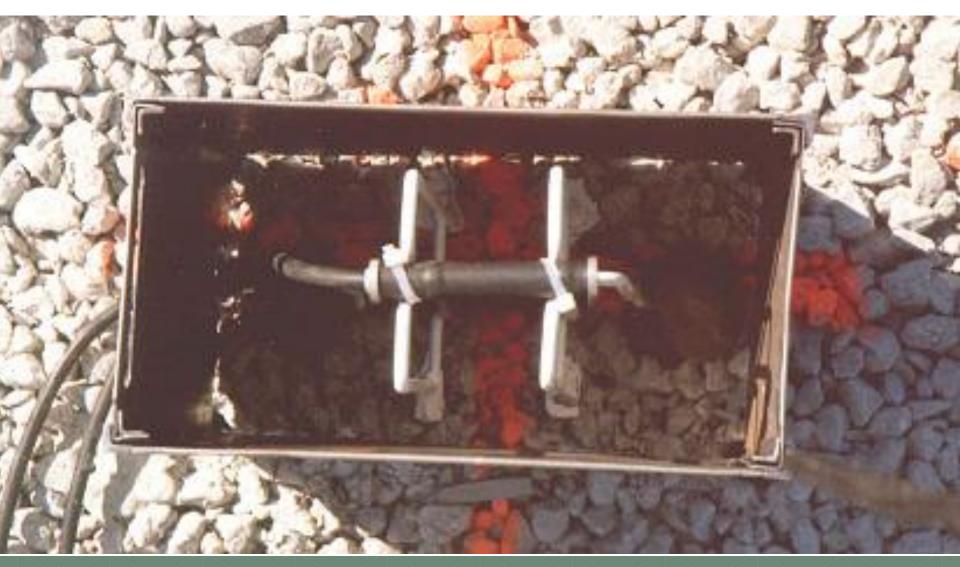
Dynamic Sensor Locations in PCC Pavement Sections

Longitudinal Profile - Left Wheelpath

Pavement Response Sensor Installation

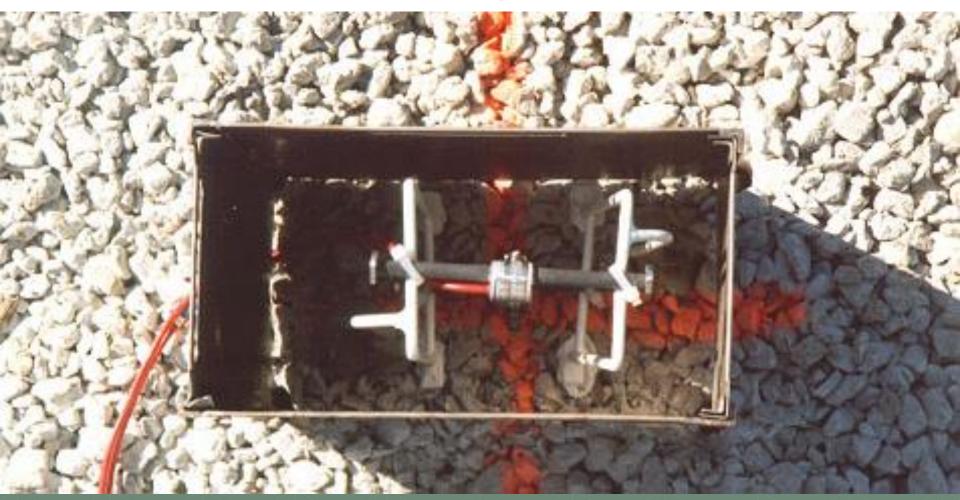


Pavement Response Sensor Installation



Dynatest Past II PCC

KM100B



Carlson A8 Strain Meter

Geokon VCE 4200 Vibrating Wire Strain Gauges

LVDTs used in PCC and AC sections

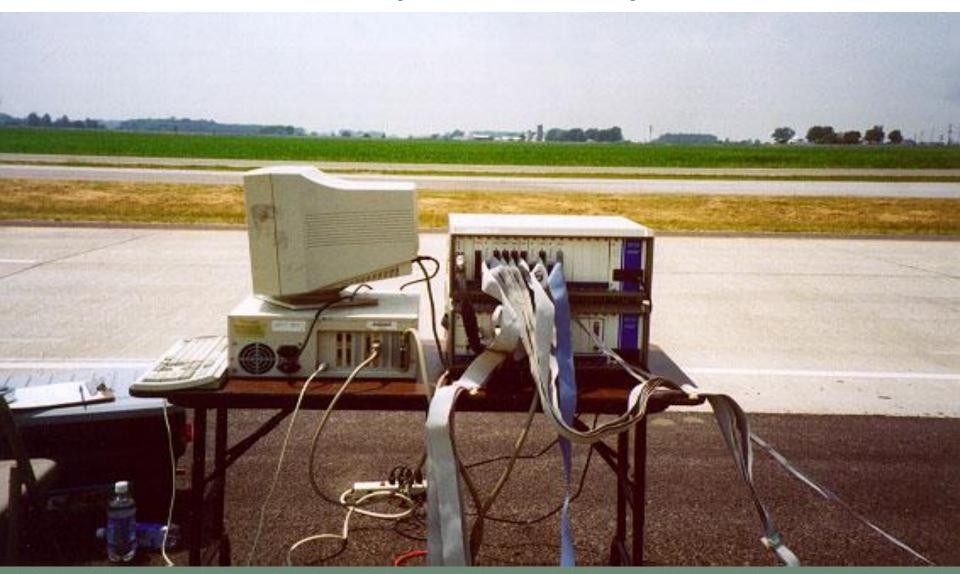
Soil Pressure Cells

Geokon Model 3500

Controlled Load Vehicle Tests

Controlled Load Vehicle Test Series Design

- Select the Sections to be tested
- Select trucks to be used in the tests
- Establish test matrix
- Check strain gauges
- Install and balance LVDTs



Setup

- Adjust air pressure in truck tires
- Load trucks to achieve desired axle weight
- Weigh trucks
 - Individual tires or set of duals
- Measure all tires for print width and geometric positioning on pavement
- Connect data acquisition systems to sensors

Data Acquisition System

Test Procedure

- Spread a thin layer of fine, damp sand in wheel path to measure lateral offset of truck
- Trigger data acquisition system as truck approaches
- Collect 500 samples per second minimum from each sensor
- Measure lateral offset distance in spread sand patch

Tire Marks on Sand Patches

Test Vehicles

Canadian National Research Council Test Truck ODOT Tandem
Axle Dump Truck

Controlled Load Vehicle Test Parameters

Test Date	Test Series	Truck	No. of Truck Passes		No. Sections Monitored		Dynamic Parameters*					
			AC Sections	PCC Sections	AC	PCC	Load	Speed	No. Axles	Axle Spacing	Tires	Vehicle Dynamics
12/5/95		CNRC-Tan-Dual	79		1	1	X	X	Х	х	x	
to	I**	CNRC-Tri-Dual	33									
3/16/96		CNRC-Tri-SS	32									
8/96	П	Single Dump	41	44	6	5	X	X	X			
		Tandem Dump	59	29								
	Ш	CNRC-Tan-SS	5		3		Sand Calibration					
		CNRC-Tan-Dual	47	34	7	8	x	Х	х	х	х	X**
6/97		CNRC-Tan-SS	55	55								
		CNRC-Tri-SS	20	20								
		Tandem Dump	122	109								
7,8/97	IV	Single Dump	38	39	12	14	X	X	X			
		Tandem Dump	38	39								
10/98	V	Single Dump	24	48	8	9	X	X	X			
10/98		Tandem Dump	12	48								
9/99	VI	Single Dump	43	43	8	8	X	X	X			
		Tandem Dump	43	43	0							
10/99	VII	Single Dump	30-60 ru	ns/section	7	7	X	X	X			
		Tandem Dump	30-60 ru	ns/section	,							
		FWD	50 drops/section		7	7						
		Dynaflect	20 readings/section		7	7						
4,5/01	VIII	Single Dump	40	40	10	12	X	X	X			
		Tandem Dump	40	40	10							
10/03	IX	Single Dump	45	0	3	0	X	X	X			
		Tandem Dump	45	0								

^{*} Pavement temperature, soil moisture and lateral truck position were monitored during each series of tests

^{**}Funded by FHWA

Summary of Concrete Sections in Controlled Load Vehicle Test

	Controlled Vehicle Test Series											
	ı	II	Ш	IV	V	VI	VII	VIII	IX			
Date	12/95, 3/96	8/96	6/97	7/97	10/98	9-10/99	Oct-99	4-5/01	10/03			
Section	SPS-2											
201		Х	X	Х	Х	Х		Х				
202			Х	х		Х		Х				
203				х			X					
204			Х	х	Х		Х	Х				
205		Х	X	Х	Х	Х		Х				
206				х		Х		Х				
207				Х			X					
208		X		Х	Х	Х		Х				
209		Х	X		Х							
210			Х	х	Х	Х		Х				
211				Х			Х					
212		X	X	х	Х	Х		Х				
261			Х		Х		X					
262				Х	Х	Х		Х				
263				х			X	Х				
264				х			X	Х				
	SPS-8											
809	Х											

Dynamic Load Response

- Approximately 11,000 axle passes during controlled truck runs
- Over 931,000 sensor readings
- Over 1200 sensors monitored
- Nine test series since 1995

Analysis of Results (example)

Section 390201

- Undrained Section
- 200 mm (8 in) of PCC
- 150 mm (6 in) of ODOT Item 304 Dense Graded Aggregate Base (DGAB)
- 3.66 m (12 ft) wide
- 4.57 m (15 ft) joint spacing

Locations of Relevant Sensors

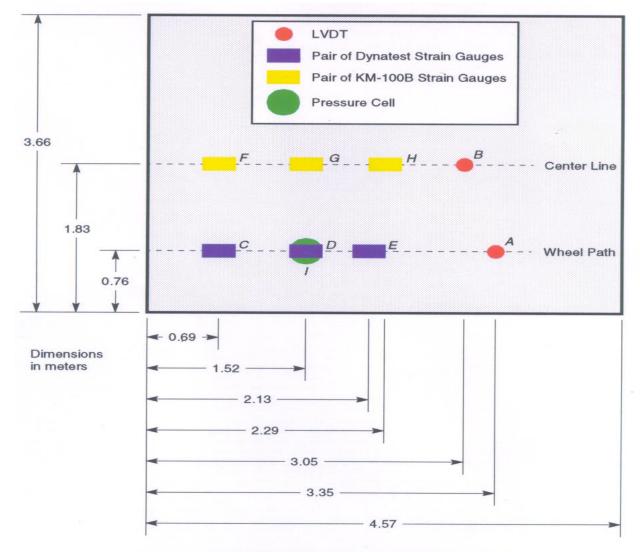
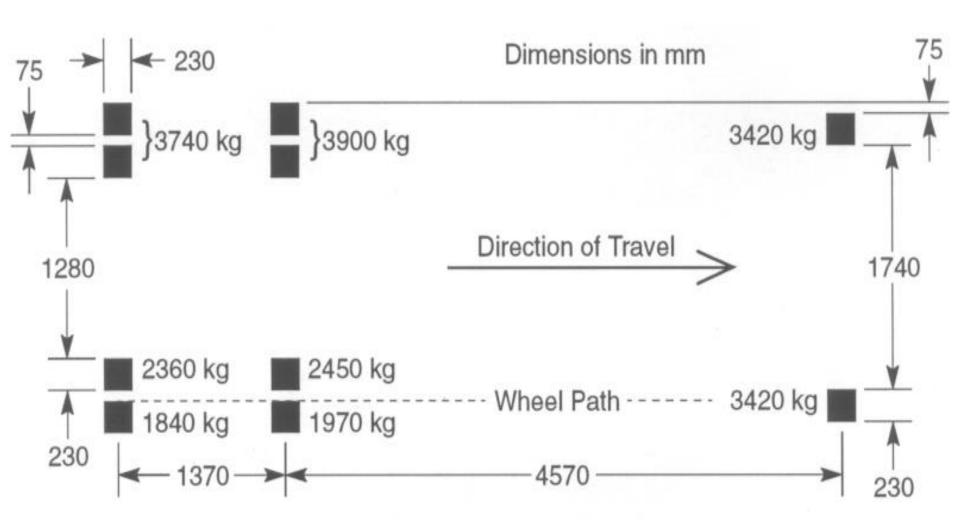



Figure 1: Locations of Sensors in PCC Section 201

Tire Loads for Example

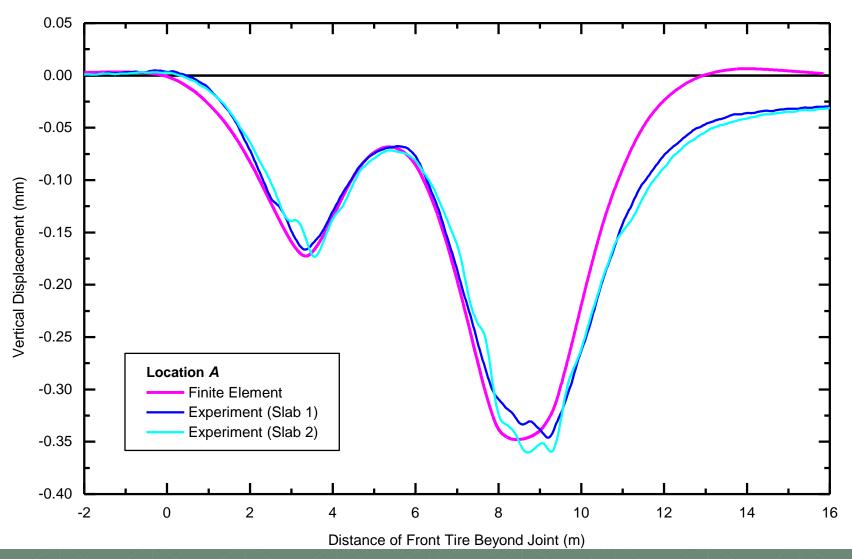
Example Parameters

- Date: July 30, 1997
- Speed: 21.8 m/s (50 mph)
- Total load: 23,000 kg (50,700 lbs)
- Load distribution area: 230 mm (9 in) square
- ODOT tandem axle truck

Finite Element Model (FEM) Parameters

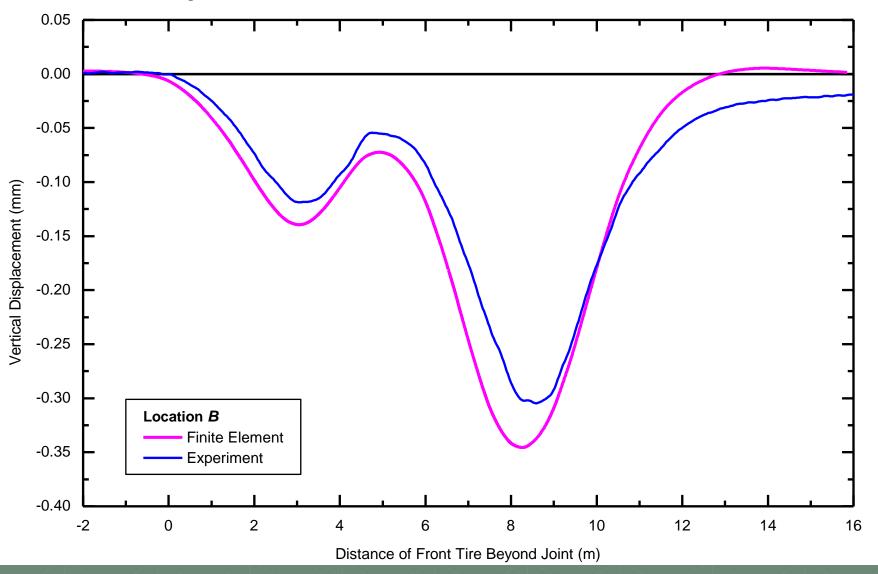
- FEM mesh modeled right half of the lane
- Enforced symmetry along longitudinal center line
- No shoulder was modeled.
 - Untied AC shoulder at the site
- Steel dowels at 305 mm (12 in) intervals
 - Dowel length: 460 mm (18 in)
 - -Dowel diameter: 38 mm (1.5 in)

Finite Element Model (FEM) Mesh Parameters

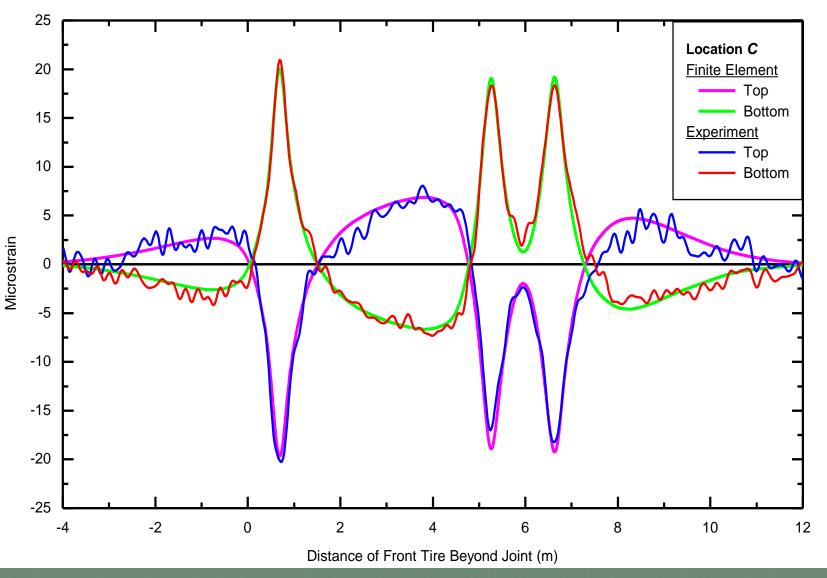

- Mesh extended 2.44 m (8 ft) to the right and 2.44 m (8 ft) below the surface
- Mesh representing jointed pavement extended 6.86 m (22.5 ft) before and after instrumented slab
- Displacement was not permitted at bottom and right boundaries

Pavement Parameters Modulus of Elasticity Used

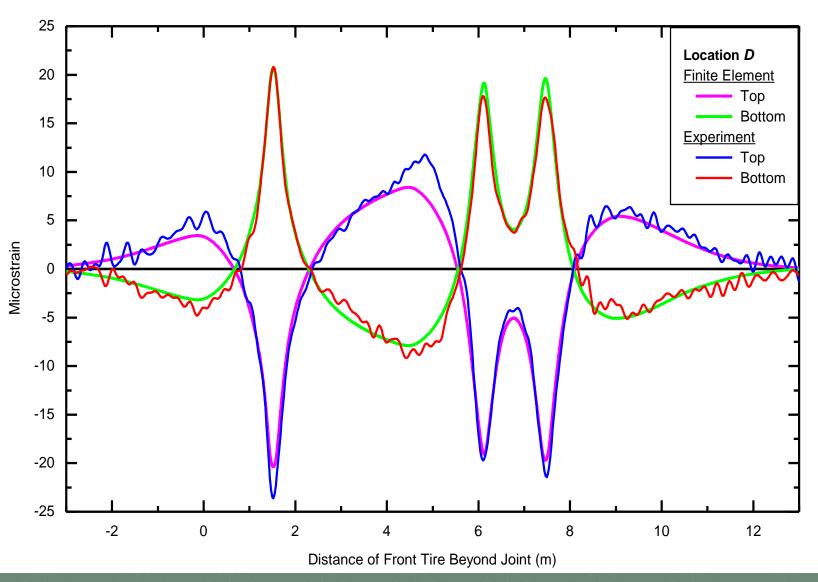
- Subgrade: 62 MPa (9000 psi)
- Base: 172 MPa (25,000 psi)
- PCC: 34,000 MPa (4,930,000 psi)



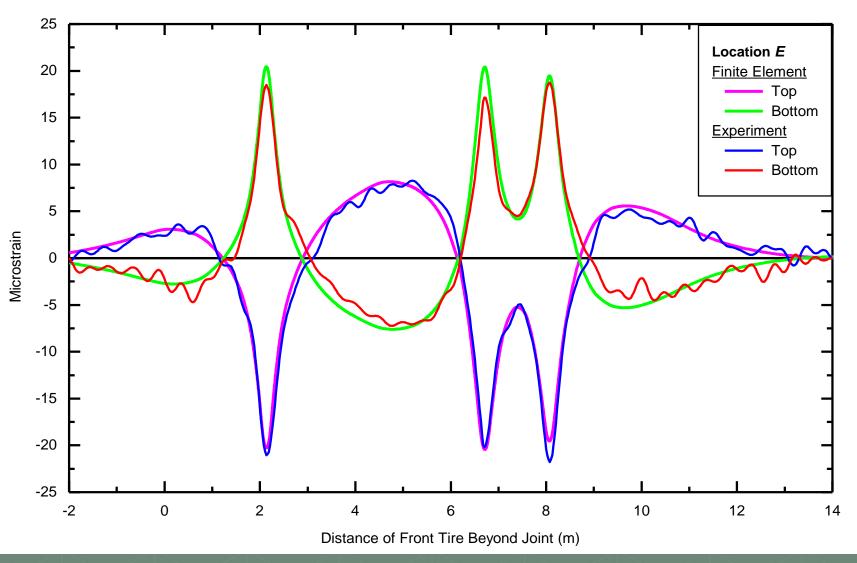
Displacement at Location A



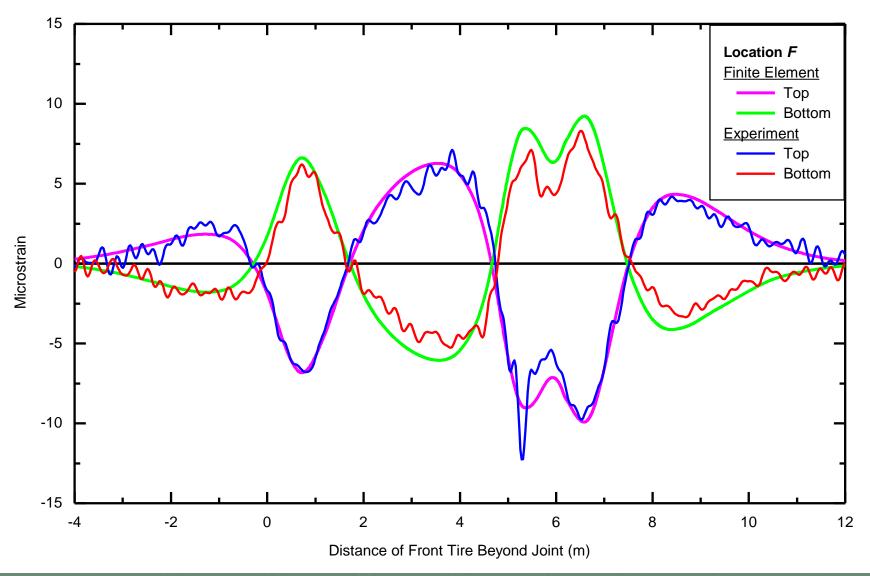
Displacement at Location B



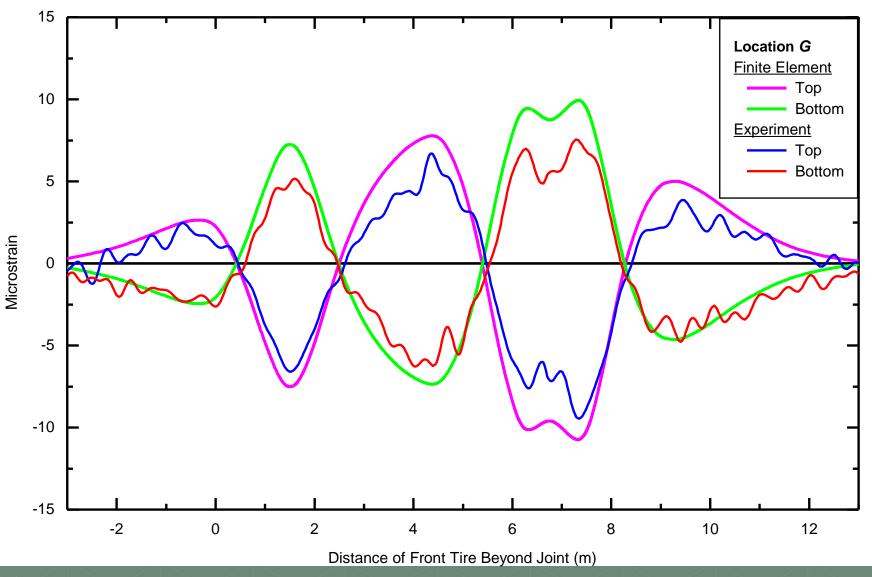
Strains at Location C



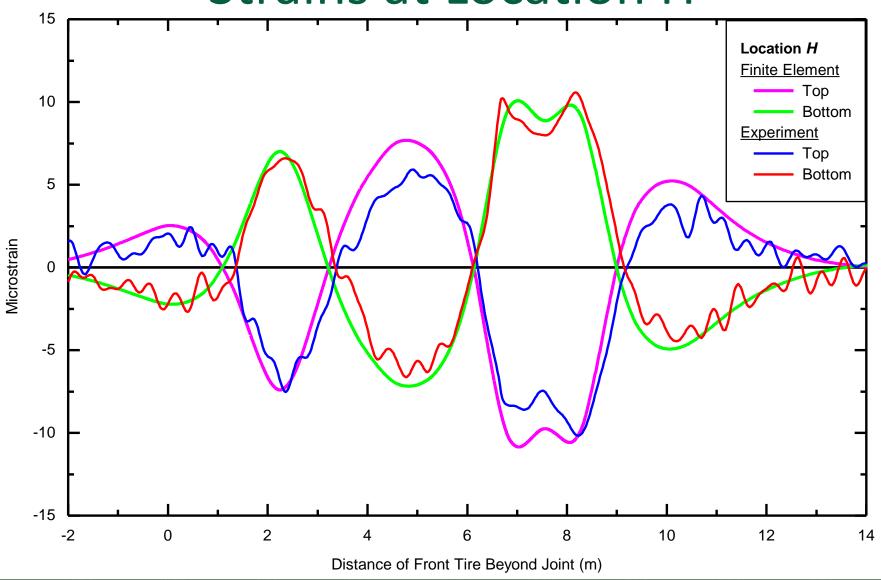
Strains at Location D



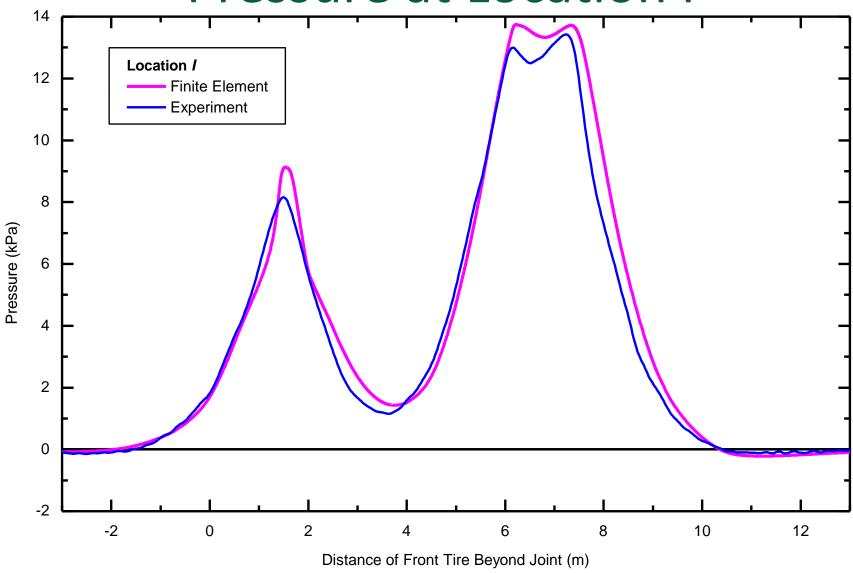
Strains at Location E



Strains at Location F



Strains at Location G



Strains at Location H

Pressure at Location I

Monitoring and Performance

Monitoring and Performance Analysis Research Projects

- Continued Monitoring of Instrumented Pavements in Ohio
 - Report FHWA/OH-2002/035, December 2002
- Evaluation of Pavement Performance on DEL-23
 - Report FHWA/OH-2007/05, March 2007
 - Collected data from 2000 2005
 - Petrographic analysis of three mixes and lean concrete base
 - Sections 205, 206, 809, and 810

LCB Petrographic Analysis

Approximately half the total air void content in cores LCB-1, LCB-2, and LCB-3 (Section 205) is entrapped air. 70% of the total air void content in LCB-4 (Section 205) represents entrapped air

Characterization Data from LCB Cores LCB-1, 2, 3, and 4

	Air Conten		t (%)	Cement		Depth of
Core	< 1 mm	> 1 mm	Total	Paste Content (%)	Density (lb./ft. ³)	Carbonation (mm)
LCB-1	3.9	3.7	7.6	18.8	141.8	Complete carbonation except for the geometric center of the core
LCB-2	4.9	4.5	9.4	19.0	139.7	Complete carbonation except for the geometric center of the core
LCB-3	4.8	6.2	11.0	16.3	139.3	Complete carbonation except for the geometric center of the core
LCB-4	2.2	5.1	7.3	19.2	143.8	Complete carbonation except for the geometric center of the core

(a) ASTM C 457

Analysis of Cores from DEL23

• 550 PSI Mix:

Sections 809 & 810

ODOT Mix: Section 206

900 PSI Mix:

Section 205

ODOT Data on Pavement Concrete in Sections 205, 206, 809, and 810

Test Section	Compi Strengt		Split Te Flexural St	Modulus of Elasticity		
Section	28-day	1-year	28-day	1-year	(10 ⁶ psi)	
205	5930 (a)	7915 (a)	545	750	7.3 (b)	
206	8165 (c)	8120 (a)	425	620		
809, 810	2910 (d)	4880 (d)	755 (c)	795 (c)	3.4 to 3.8	

⁽a) Average for three cores (b) 1-year (c) Flexural strength (d) Average for six cores and cylinders

Characterization Data Obtained on Cores PCC-1, 2, 3, and 4

Core	Estimated Water To Cementitious Material Ratio	Air ^(a) Content (%)	Saturated Density (lb./ft³)	Cement Paste Content (%)	Depth of Carbonation On Wearing Surface (mm)
PCC-1	0.30	2.5	146.7	35.5	0
PCC-2	0.30	2.2	147.8	35.1	0
PCC-3	0.30	6.6	140.4	35.0	0
PCC-4	0.40	2.5	147.3	27.0	0

⁽a) ASTM C 457

Sections 809 and 810: 550 PSI Mix

Characterization Data for Cores 809 and 810

Core	Estimated Water To Cementitious	A	Air Conter (%)	nt	Cement Paste	Density	Depth of Carbonation (mm)	
Core	Material Ratio (%)	<1 mm	> 1 mm	Total	Content	(lb./ft³)		
809	0.55 - 0.58	4.6	2.8	7.4	20.4	140.5	3 - 6	
810	0.45 - 0.52	4.5	2.5	7.0	20.7	140.8	3 - 5	

(a) ASTM C 457

Class C Mix, Core PCC-4

900 PSI Mix

• Energy dispersive X-Ray Spectrum from PCC 1, 2, 3 showed evidence of very mild ASR activity (rims on chert) (Ca, K, and Na in figure)

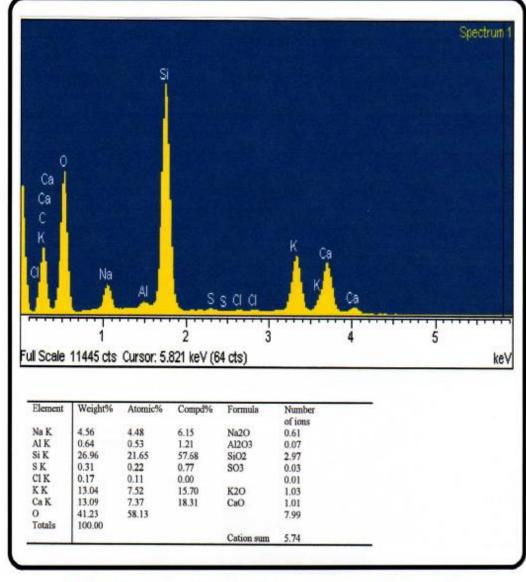
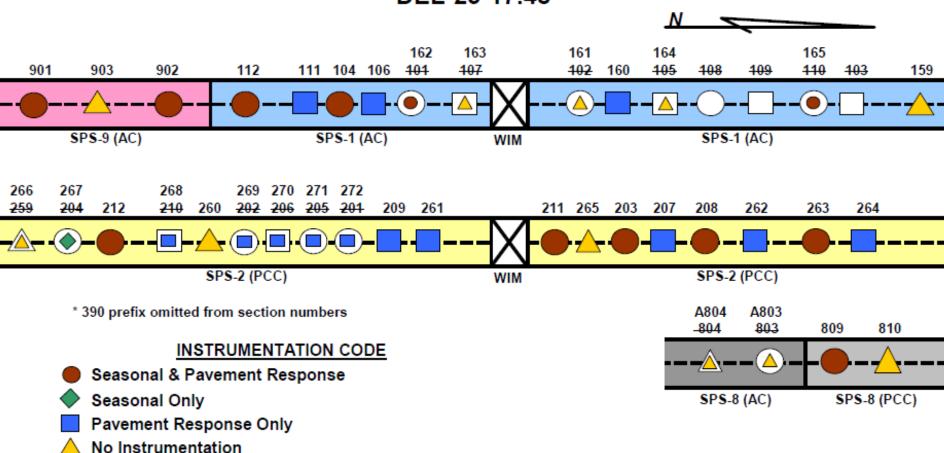



Figure 6.11 - Energy Dispersive X-ray Spectroscopy (EDS) Spectrum of Material Deposited as Efflorescence - Section 206

Replaced Sections

SHRP Test Pavement* DEL-23-17.48

Original Section - Seasonal & Pavement Response

Replacement Section - No Instrumentation

Tech Note No. 3

Subgrade moisture was higher at the southern end of the project.

Depth of water	r table below	top of	pavement	12/17/96 -	1/22/99,	meters (1	feet)
----------------	---------------	--------	----------	------------	----------	-----------	-------

	Avera	age	Maximu	ım	Minim	um	Vin
Section No.	Depth	Elevation	Depth	Elevation	Depth	Elevation	OCHO
390103	2.60 (8.52)	(946.85)	3.71 (12.17)	(943.20)	1.96 (6.43)	(948.94)	
390108	2.00 (6.56)	(946.79)	2.87 (9.42)	(943.93)	1.57 (5.15)	(948.20)	WALL DESIGNATION
390102*	1.58 (5.18)	(948.51)	1.90 (6.23)	(947.46)	1.26 (4.13)	(949.56)	MANA
390104	1.20 (3.94)	(952.06)	1.71 (5.61)	(950.39)	0.80 (2.62)	(953.38)	
390901	2.53 (8.30)	(947.22)	3.48 (11.42)	(944.10)	1.70 (5.58)	(949.94)	
390204	2.77 (9.09)	(946.47)	3.30 (10.83)	(944.73)	2.39 (7.84)	(947.72)	
390212	1.73 (5.68)	(951.47)	2.12 (6.96)	(950.19)	1.47 (4.82)	(952.33)	
390201	1.60 (5.25)	(949.62)	1.77 (5.81)	(949.06)	1.38 (4.53)	(950.34)	

3.60 (11.81)

(942.55)

2.02 (6.63)

(947.73)

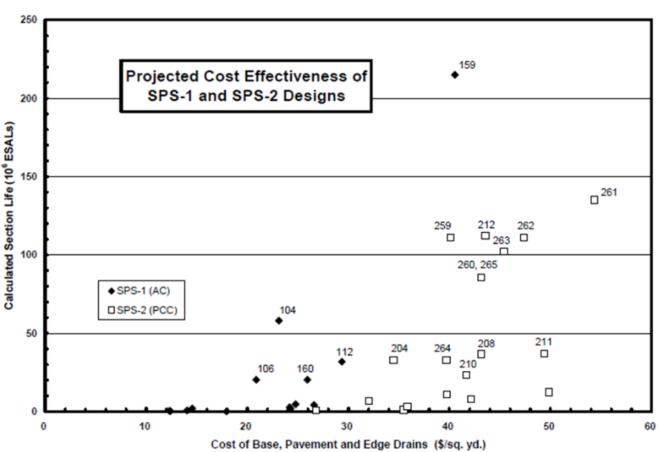
(945.96)

2.56 (8.40)

390208

^{*}Sensor destroyed after the 3/12/97 reading

Tech Note No.3


- Average subgrade moduli in the 36 mainline test sections, as determined by the FWD and Boussinesq equation varied from 4.97 to 29.77 ksi with an average of 15.18 ksi.
- The standard deviation was 8.24 ksi and the coefficient of variation was 54%
- This six fold difference in average modulus can have a dramatic effect on performance, especially those designed for limited service.

Section No.	0.11	Nuc	lear Density	In-Situ Modulus - FWD					
	Soil Classification	Dry Unit Weight		Moisture	Ave	rage	Std. Deviation		cv
		pcf	kg/m3	Content (%)	Mpa	ksi	Mpa	ksi	
				SPS-1					
390101		116.8	1870.4	8.9	80.6	11.69	40.1	5.81	0.5
390102		124.6	1995.9	8.3	140.5	20.37	58.3	8.45	0.4
390103		119.8	1919.0	7.7	108.2	15.69	30.2	4.38	0.2
390104		119.7	1918.0	9.2	116.2	16.85	48.7	7.06	0.4
390105		117.6	1883.8	9.7	107.2	15.54	22.8	3.31	0.2
390106		123.4	1976.2	10.0	123.3	17.88	40.9	5.93	0.3
390107	A-7-6	121.3	1942.5	6.8	115.6	16.76	39.4	5.71	0.3
390108		117.4	1881.1	8.5	130.7	18.95	44.0	6.38	0.3
390109		119.7	1917.9	9.7	79.4	11.51	39.2	5.68	0.4
390110	A-4/A-43	118.0	1889.7	9.7	89.3	12.95	37.5	5.44	0.4
390111	A-6	121.3	1943.6	9.7	124.7	18.08	62.0	8.99	0.5
390112		121.9	1953.2	8.7	95.3	13.82	43.3	6.28	0.4
390159		118.9	1905.1	11.3	39.8	5.77	22.0	3.19	0.5
390160	A-4/A-48	123.1	1971.8	8.5	128.5	18.63	38.6	5.60	0.3
				SPS-9	1200	10.00	30.0	3.00	0.5
390901		126.2	2021.5	9.7	186.0	26.97	99.6	14.44	0.5
390902	A-4/A-4a	122.2	1958.0	10.7	106.9	15.50	47.8	6.93	0.4
390903		126.1	2020.4	8.8	98.8	14.33	41.1	5.96	0.4
		- 10.011	2020.4	SPS-2	30.0	(4.33	. 41,1	3.50	U.4
390201		119.6	1916.3	11.1	62.4	9.05	28.6	4.15	0.4
390202	A-6	124.6	1995.4	10.4	123.4	17.89	70.0	10.15	0.5
390203		120.4	1928.6	8.4	103.0	14.94	28.2	4.09	0.2
390204		124.5	1994.3	9.8	205.3	29.77	95.4	13.83	0.4
390205	A-6	118.6	1899.3	11.0	64.3	9.32	37.1	5.38	0.5
390206	0.50	120.0	1921.7	10.1	87.8	12.73	46.1	6.68	
390207	A-6	120.9	1936.1	8.2	117.8	17.08	36.2	5.25	0.5
390208		115.2	1845.3	9.3	112.7	16.34		5.66	
390209		118.1	1891.8	11.7	71.6	10.34	39.0 54.1	0.000000	0.3
390210		116.0	1858.7	8.8	71.1	10.38		7.84	0.7
390211	A-6	119.7	1917.4	9.4	109.3	100000000000000000000000000000000000000	31.4	4.55	0.4
390212	A-U	126.0	2017.8	9.4		15.85	21.2	3.07	0.19
390212		115.0	1842.1	8.7	140.9 79.0	20,43	49.0 33.9	7.11	0.3
390260		121.4	1945.2	11.6	101.5	1000	100000000000000000000000000000000000000	4.92	0.4
390261		120.7	1933.9	9.0	124.1	14.72	41.6	6.03	0.4
390262	A-6	120.7	1933.9	8.9	107.8	17.99 15.63	43.9	6.37	0.3
390263	7.7	119.4	1912.6	10070701			42.6	6.18	0.4
390264		112.4	1799.9	11.3	93.7	13.59	42.7	6.19	0.4
390265				13.4	34.3	4.97	15.8	2.29	0,4
330203	Auser	121.9.	1953.2	8.6	88.7	12.86	18.3	2.65	0.2
	Average Std. Dev.	120.7	1930.8	9.6	104.7	45.18	42.5	6.16	0.4
		4.3	68.6	1.8	56.8	8.24			
	Coef. Of Var.	0.04	0.04	0.18	0.54	0.54			

Evaluation of Pavement Performance

 Estimates of construction costs and predicted service life show Section 259 to be the most cost effective PCC section.

 PCC sections containing high strength concrete had skid numbers in the low thirties, while sections with standard concrete had skid numbers in the low forties.
 This ten point difference can be an important safety consideration

Evaluation of Pavement Performance

Fracture planes in the PCC cores were oriented perpendicular to the plane of the wearing surface. There was actually more than one crack involved, and these cracks exhibited a significant amount of branching. The cracks passed through, rather than around, coarse aggregate particles. The nature of this cracking indicated that it was a fatigue failure which occurred as a result of repeated stress applications over a period of time. These cracks were initiated at the slab surface and propagated down into the slab

Evaluation of Pavement Performance

- Top-down slab cracking requires either a failure of the base material, and/or curling of the PCC slab. Observations made in the laboratory, as well as data generated at the project site, suggested that slab curling caused by differential temperatures and/or moisture through the slab was the most likely cause of the cracking
- The 8 inch and 11 inch thick PCC slabs on lean concrete base (LCB) were the first to exhibit longitudinal cracking.

TPI Pooled Fund Study

TPI Pooled Fund Study

- Truck/Pavement/Economic Modeling and In-Situ Field Data Analysis Applications
 - Report FHWA/OH-2006/3A, March 2007
 - Volume 1: Influence of Drainage on the Selection of Base

TPI Pooled Fund Study: Subgrade Moisture

- GB variation 2 to 4 % (Ohio data)
- GB variation 1% (NC data)
- PATB and LCB 2 to 4% (all data)
- LCB magnitude of variation is site dependent (2% to 9%)

TPI Pooled Fund Study: Subgrade Moisture Conclusions

- GB, ATB, PATB same (Ohio & NC data)
- LCB is highly variable (Ohio & NC data)
- Unable to establish effect of base from LTPP database (DataPave)
- LTPP data (Ohio & NC) did not support the hypothesis that base type affects subgrade moisture contents

- Pavement type does not appear to have an appreciable effect on the volumetric moisture content (VMC) of the subgrade
- VMC data shows, in most cases, a slight reduction in moisture close to the subgrade surface when longitudinal drains are present

ORITE-9 (ODOT) 344 .

 VMC data show, in most cases, a slight reduction in moisture close to the subgrade surface when longitudinal drains are present

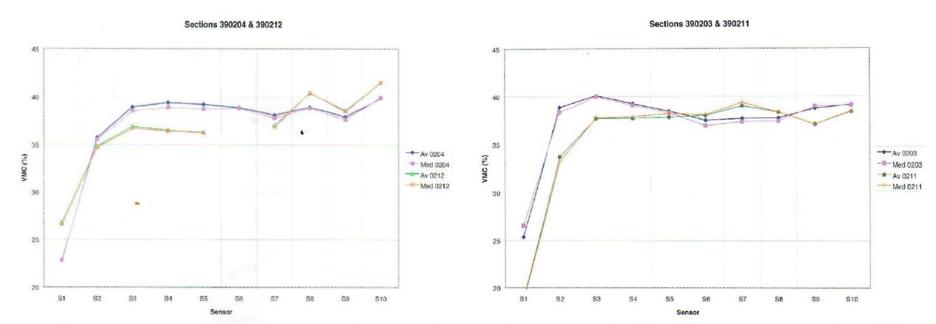
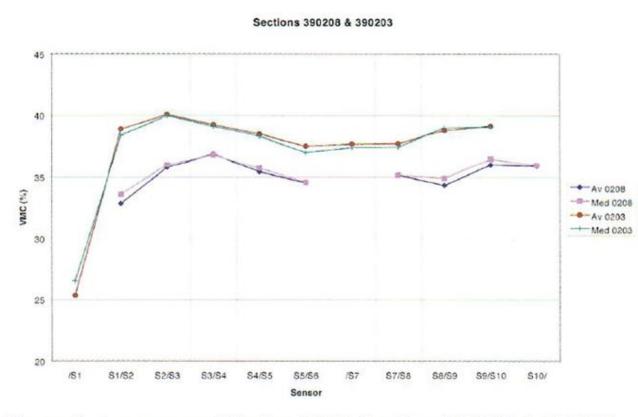
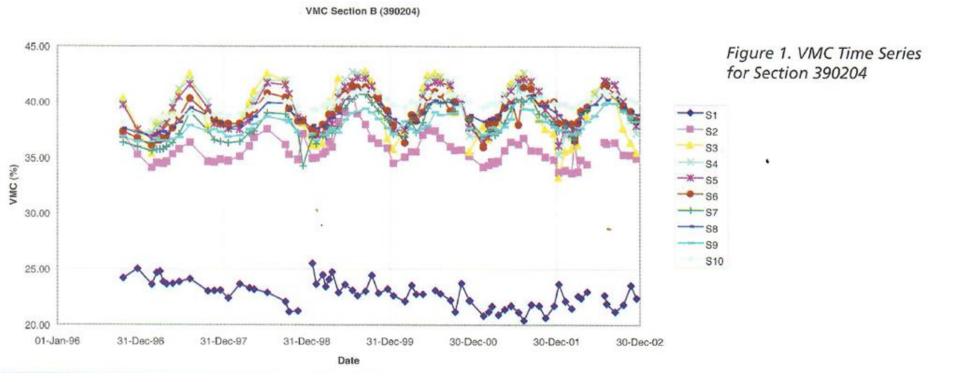
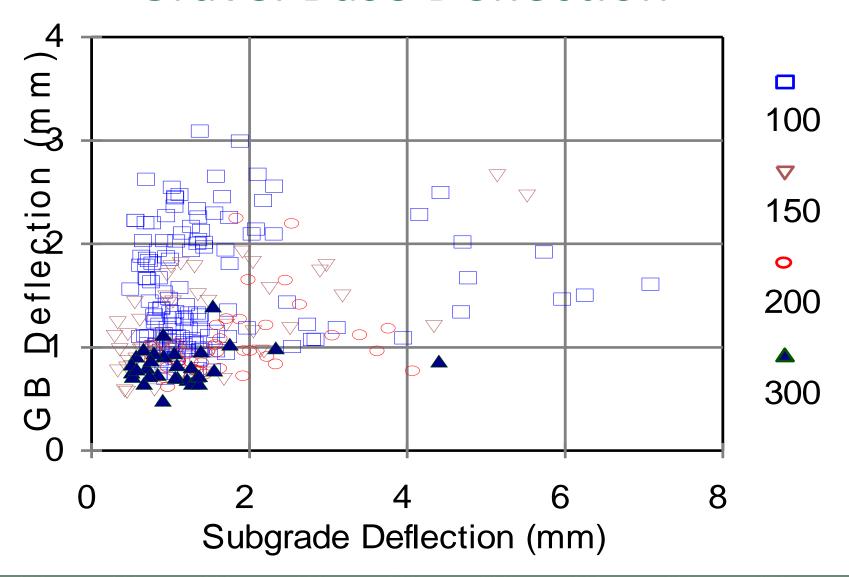


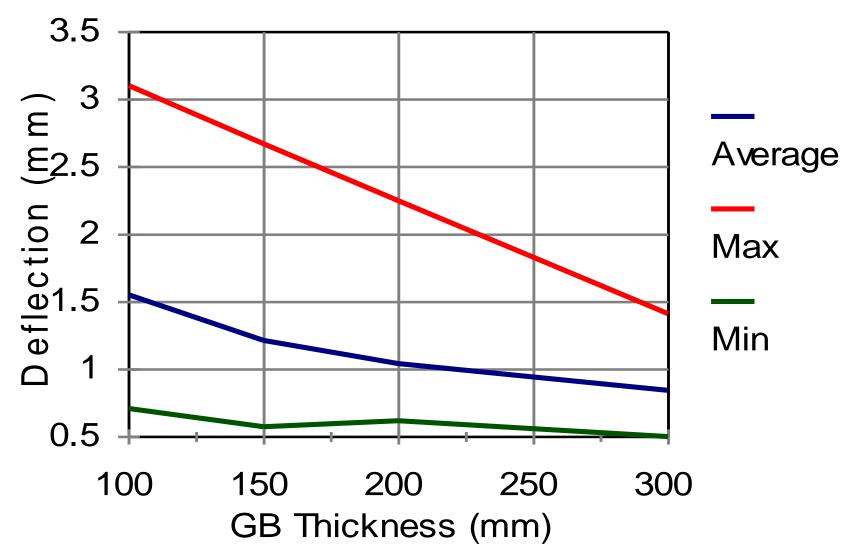
Figure 5. Average and Median VMC (Sections 390204 & 390212) Figure 6. Average and Median VMC (Sections 390203 & 390211)

Sections with DGAB tended to have a higher VMC through the subgrade when other factors were removed from the comparison

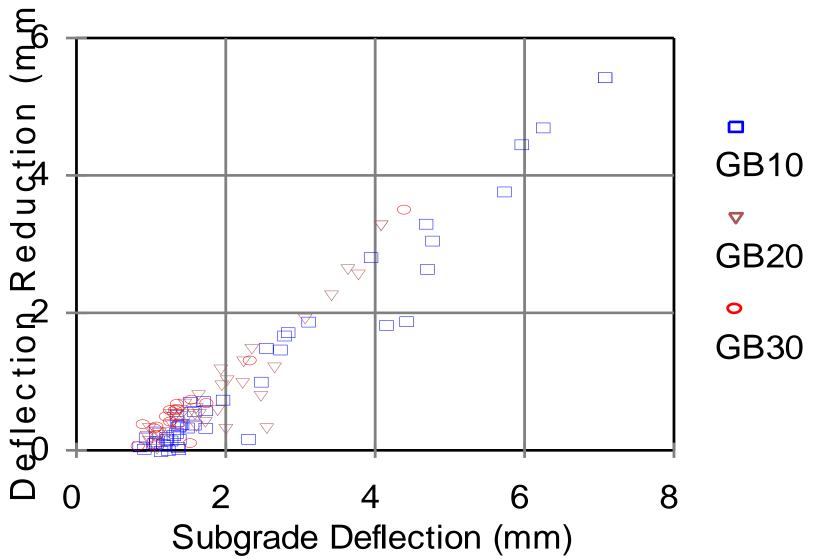




Figure 7. Average and Median VMC (Sections 390208 & 390203)

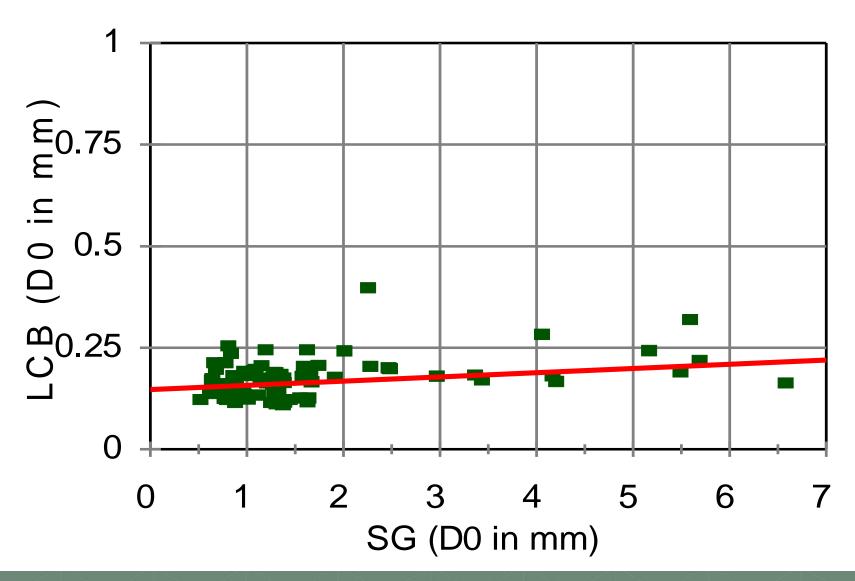
- Subgrade moisture experiences annual cycles
 - Maximum values in July-August
 - Minimum values occurring in January-February



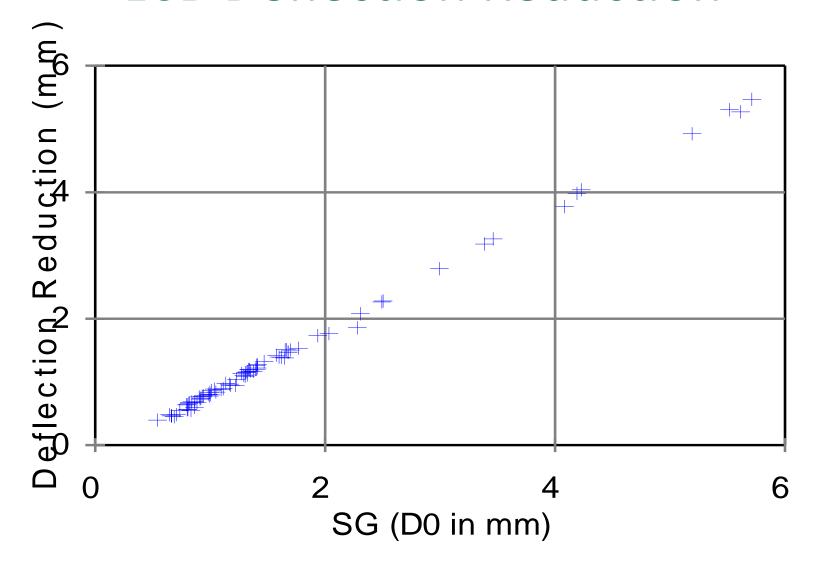
Gravel Base Deflection



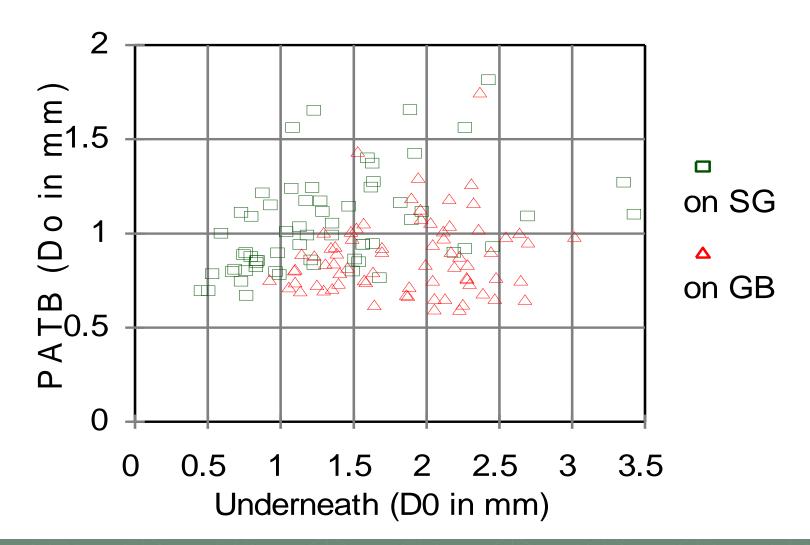
Gravel Base Deflection



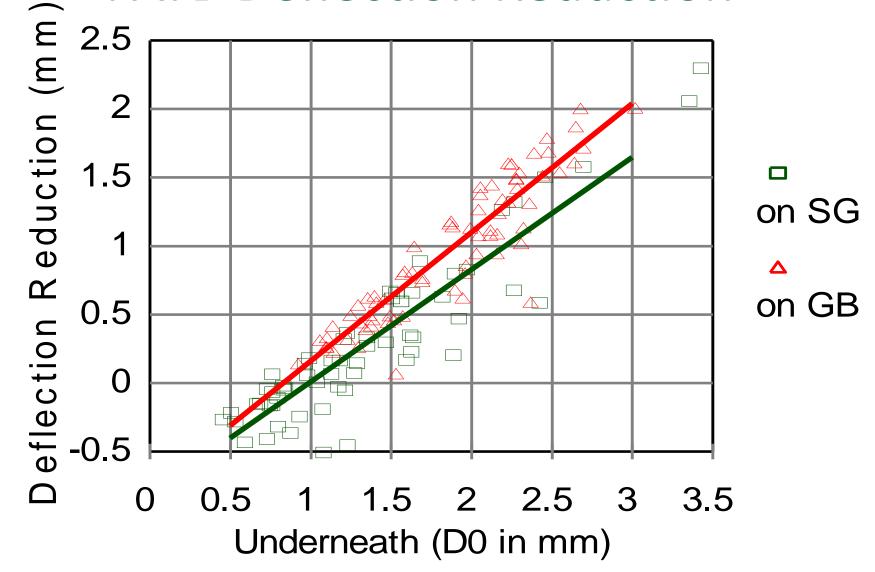
Gravel Base Deflection Reduction



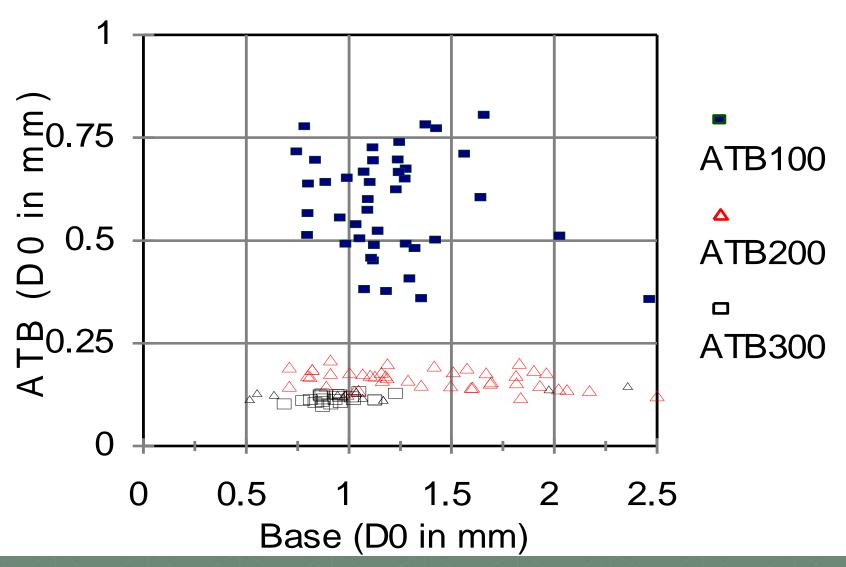
LCB Deflection



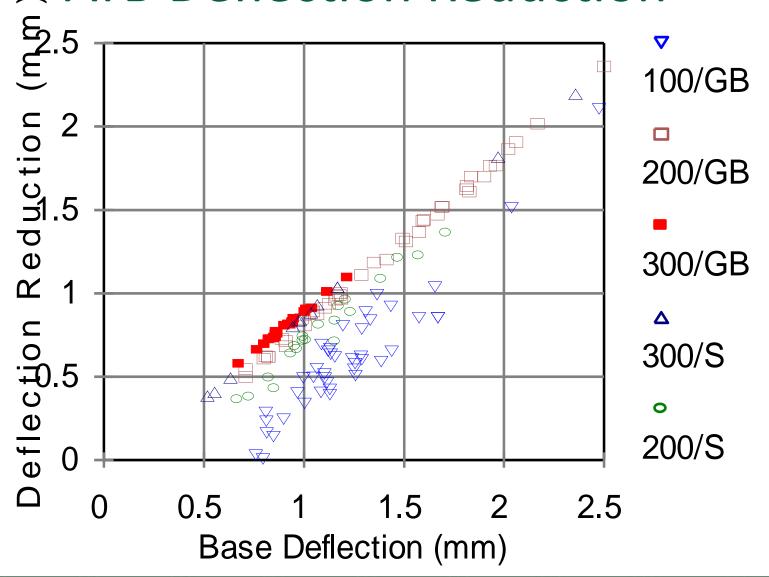
LCB Deflection Reduction



PATB Deflection (100mm)

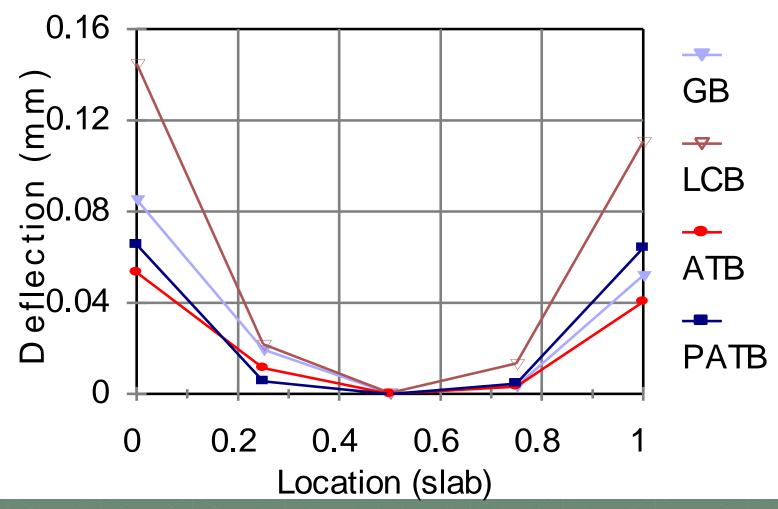


PATB Deflection Reduction

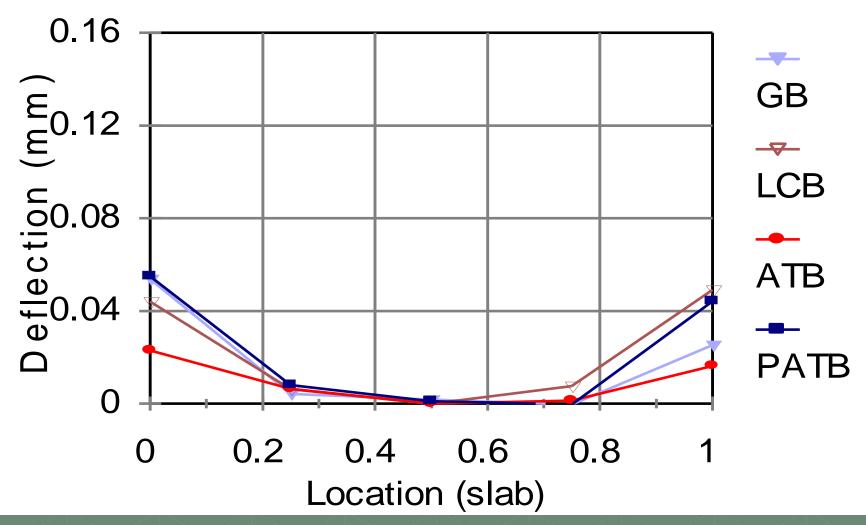


ATB Deflection

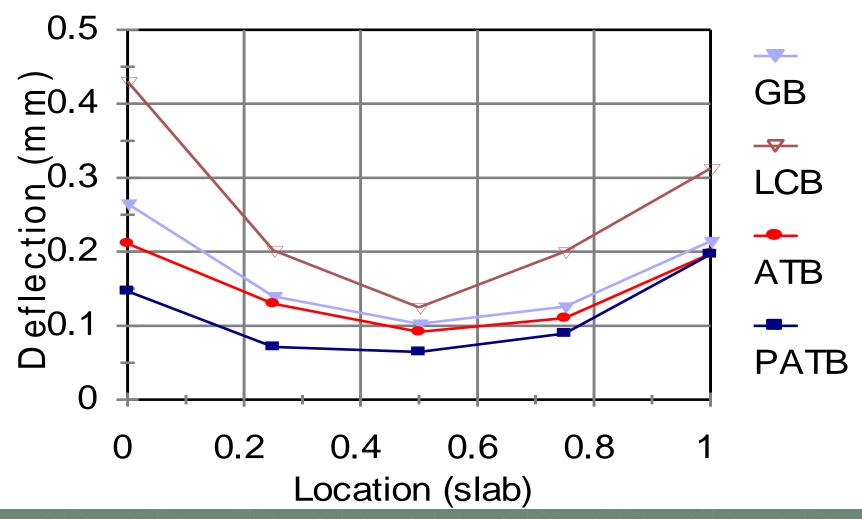
ATB Deflection Reduction



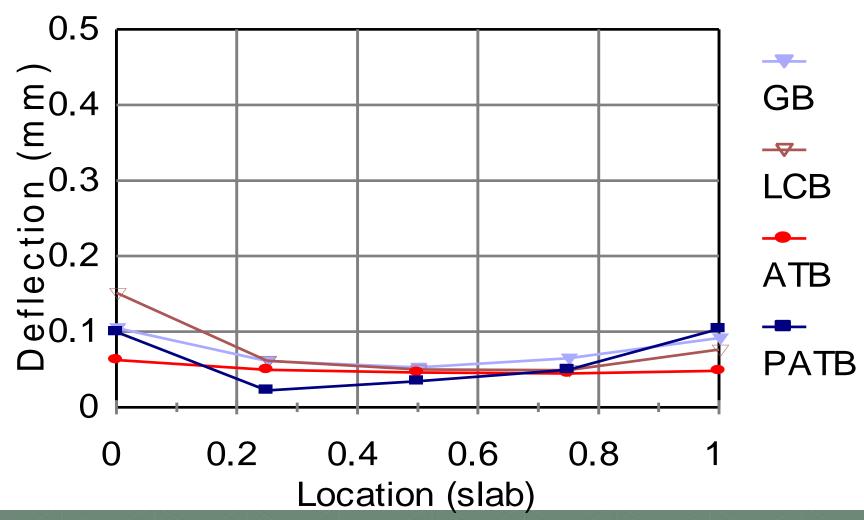
Findings from Base Deflection


- GB: > 200mm (stiffness, uniformity)
- ATB: > 150mm (uniformity)
- 150mm LCB = 200mm ATB
- 150mm PATB = 200mm GB

Dawn (center of lane, Normalized)



PM (Center of Lane, Normalized)



Dawn (edge, Normalized)

PM (Edge, Normalized)

Findings from Curling Effect Analysis

- LCB has greatest variation (fatigue life)
- ATB has least variation
- GB and PATB are in between

Base Type Selection

Instrumented Test Pavements in Ohio

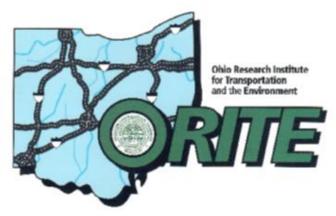
- Ohio SHRP Test Road US23 in Delaware
- SR 2 Vermillion
 - Instrumentation of a Rigid Pavement System
- US33 Bellefontaine
 - A Demonstration Project on Instrumentation of a Flexible Pavement
- US35 Rio Grande
 - Pavement Joint Performance

Rigid Pavement

- Uniform support to the slab at all times and all locations (base stiffness)
- Non-erosive (pumping)
- Construction platform (support paver)

Rigid Pavement

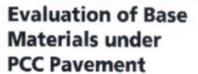
- ATB is the best base
- LCB is sensitive to curling effect, poor performance
- GB performed fairly (lower volume facilities)
- PATB performed better than GB and LCB
- ATB is denser and more stable than PATB
- ORITE Tech Note No. 4
- ASCE Journal of Transportation Engineering
 - Vol 132, No. 10 p. 753, Oct. 2006


Rational Approach for Base Type Selection

Shad M. Sargand, M.ASCE1; Shin Wu, M.ASCE2; and J. Ludwig Figueroa, F.ASCE3

Abstract: The objective of this study was to investigate how base materials should be properly selected for specific types of pavement, considering not only the performance of individual layers but also how they interact in the completed pavement structure. Base types considered included: granular (GB), lean concrete (LCB), asphalt treated (ATB), cement treated (CTB), and permeable asphalt treated (PATB) bases, constructed under both hot mix asphalt (HMA) and Portland cement concrete (PCC) pavements. The Long Term Pavement Performance (LTPP) Seasonal Monitoring Program (SMP) sites investigated included four SMP sections in the North Carolina SPS-2 experiment on US52 (wet-no-freeze zone) and 13 SMP sections in the SPS-1 and SPS-2 experiments on the Ohio SHRP Test Road (wet-freeze zone). The NC site contained two GB and two LCB sections, and the OH site contained eight GB, one ATB, two PATB, and two LCB sections. Environmental data were collected via seasonal monitors and time domain reflectometry. Pavement performance was monitored by obtaining periodic condition surveys and falling weight deflectometer measurements. Major findings of the study included the fact that base type had little impact on subgrade moisture and that the choice of base depends chiefly on three requirements: (1) appropriate stiffness; (2) sufficient permeability; and (3) good constructability. Guidelines for the selection of bases under flexible and rigid pavements are given.

DOI: 10.1061/(ASCE)0733-947X(2006)132:10(753)


CE Database subject headings: Rigid pavements; Flexible pavements; Drainage; Moisture; Subgrades; Base course.

ORITE-4(ODOT)

Questions?

Create for Good.

https://www.ohio.edu/engineering/orite/research/projects/test-roads/us-23.cfm

