PLC, Performance within the Concrete Construction Industry ?

(New Fangled Cements)

Peter Taylor

National Concrete Pavement Technology Center

Outline

- Why change
- Reported effects
- Implications
- But wait...
- Where next

Why change?

- It is getting hotter
- Federal Government is pressing to reduce carbon impact
 - At construction
 - Over pavement life

BBC

How?

- What can we do to reduce impact?
 - Use less concrete
 - Use less binder in the concrete
 - Use less clinker in the binder
 - Reduce construction impacts
 - Reduce user impacts

Use Less Clinker in the Binder

- Portland Limestone Cements (ASTM C 595)
 - Up to 15% ground limestone
 - Similar performance
 - Becoming the norm

Portland Limestone Cements

• Why the 15% limit?

Matschei

Portland Limestone Cements

- Potential impacts on carbon
 - ~100 MT cement produced in the USA 2021
 - Means about ~6 MT less CO₂ is possible
- Context
 - USA Carbon emissions ~4,700 MT
 - Cement contribution ~ 41 MT

Impacts on Manufacturers

- Finer grinding reduces mill throughput
- New limestone feeders required
- Particle Size Distribution equipment required
- Trials required to identify appropriate fineness target for given % limestone
- New grinding aids & dispensing equipment required
- Trials required to identify correct dosage of grinding aid

GCC

Workability	Increase or decrease No significant effect on admixtures	PCCA Fortcast Control Association Research & Development Information
Bleeding	Decreases with increasing fineness Generally of no concern	PCA R&D SN3148
Setting time (initial, final)	<mark>May vary</mark>	State-of-the-Art Report on
Heat of hydration	Slight increase at early ages (up to 48 hours) But less significant at later ages	Use of Limestone in Cements at Levels of up to 15%
Compressive strength	May vary	by L. C. Tellins, m. D. K. Hoonas, uns H. S. Hoos
Scaling and freeze-thaw resistance	Use same techniques as with PC concrete mixes: Proper air-void systems, curing, higher strengths	@Portiand Content Association 2011 Emails contracts September 2014 A fighter revented
Sulfate resistance	Use same techniques as with PC concrete mixes: Low w/cm, min. strength, and MS or HS designations	Stationenie end Markowski (1931) Markowski (1936) Markowski (1936) Markowski (1937)

- March 2023 The sky is falling
 - Strengths
 - Air void systems
 - Bleeding
 - Setting
 - Scaling
 - Variability load to load

ACI 302 ASCC Survey

ACI 302 ASCC Survey

Compressive strength

13

Compressive strength

14

- Air content
 - High airs reported in some petro reports
 - Not repeated in the lab
 - Clustering?

- March 2023
 - The sky is falling
- 9 months later:
 - One for one will not work in all cases
 - Trial batches and proportion adjustments are necessary
 - Allow for change in water demand
 - "Works fine when I add 10% more"!

- Practices may have to be adjusted
 - Setting time
 - Bleed
 - Strength development

- Costs of trials
- Costs of slower construction
- Costs of changing risks
- Are the current specs appropriate?
- What about the variability?
- Why can't we go back to the good old days?
- It's too complicated!

Experience

- Oklahoma 2012
 - PLC with 15% Class C Ash
 - 5,300 psi @28 days
- Reportedly doing well

Experience

MNDOT Test sections 2022 – PLC + 30% fly ash

20

But Wait – There's More

- Harvested fly ash
- LC3
- 50% clinker
- Geopolymers
- CaSiO₂ sourced clinker
- Other powders

Potential Impacts

- Shrinkage
 - Joint spacing
 - Warping
 - Steel requirements
- Strain capacity
 - 300 με may no longer be valid
- Stiffness
 - E = 57,000 $\sqrt{f_c}$ may no longer be valid
- Poisson's ratio
 - P = 0.2 may no longer be valid

Potential Impacts

- Batch sequencing
- Finishing timing
- Curing needs
- Sawing timing
- Form stripping

Potential Impacts

I have to know what's in it
How good is your chamic

Impacts on Owners

- I have to know what it does but what?
 - Are we specifying the right things for cements?
 - Set time
 - Strength gain
 - HOH
 - Sulfate expansion
 - Autoclave
 - Air
 - Is anything missing?
 - Permeability
 - Shrinkage
 - Or do we worry about the concrete?

TABLE 1 Standard Physical Requirements									
Cement Type	Applicable Test Method	GU	HE	MS	HS	MH	LH		
Fineness	C204, and	A	A	A	A	A	A		
Autoclave length change, max, % Time of setting, Vicat test ⁸	C430 or C1891 C151/C151M C191	0.80	0.80	0.80	0.80	0.80	0.80		
initial, not less than, minutes		45	45	45	45	45	45		
initial, not more than, minutes		420	420	420	420	420	420		
Air content of mortar volume, max, % ^C Compressive strength minimum, MPa [psi] ^D	C185 C109/C109M	12	12	12	12	12	12		
1 day			12.0 [1740]						
3 days		13.0 [1890]	24.0 [3480]	11.0 [1600]	11.0 [1600]	5.0 [725]			
7 days		20.0 [2900]		18.0 [2610]	18.0 [2610]	11.0 [1600]	11.0 [1600]		
28 days		28.0 [4060]			25.0 [3620]		21.0 [3050]		
Heat of hydration, max, kJ/kg [cal/g]	C1702								
3 days						335 [80]	200 [50]		
7 days							225 [55]		
Mortar bar expansion	C1038/C1038M								
14 days, % max		0.020	0.020	0.020	0.020	0.020	0.020		
Sulfate expansion (sulfate resistance)E	C1012/C1012M								
6 months, max, %				0.10	0.05				
1 year, max, %					0.10				
	0	ptional Physical	Requirements						
Option A—Air entraining ^{C,F}	C185								
Air content of mortar, vol %									
max		22	22	22	22	22	22		
min		16	16	16	16	16	16		
Option R—Low reactivity with alkall-silica- reactive aggregates ^a	C227								
Expansion at									
14 days, max, %		0.020	0.020	0.020	0.020	0.020	0.020		
56 days, max, %		0.060	0.060	0.060	0.060	0.060	0.060		
Early stiffening, final penetration, min,%	C451	50	50	50	50	50	50		
Compressive strength, ^D 28 days, min, MPa	C109/C109M			28.0		22.0			

ASTM

Where next

- Learning and thinking required
- Talk to your supplier
- Specify the properties you need
- Do those trial batches
 - Call if you need help
 - Stay away from the cliff edge
- Let's talk about the future

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation