

Industrial Parking Lots Asphalt Pavement Designs

February 17, 2021

© 2021 Applied Research Associates, Inc. • ARA Proprietary

Contact Info: mharrell@ara.com 217.239.9730

Introduction: Mike Harrell

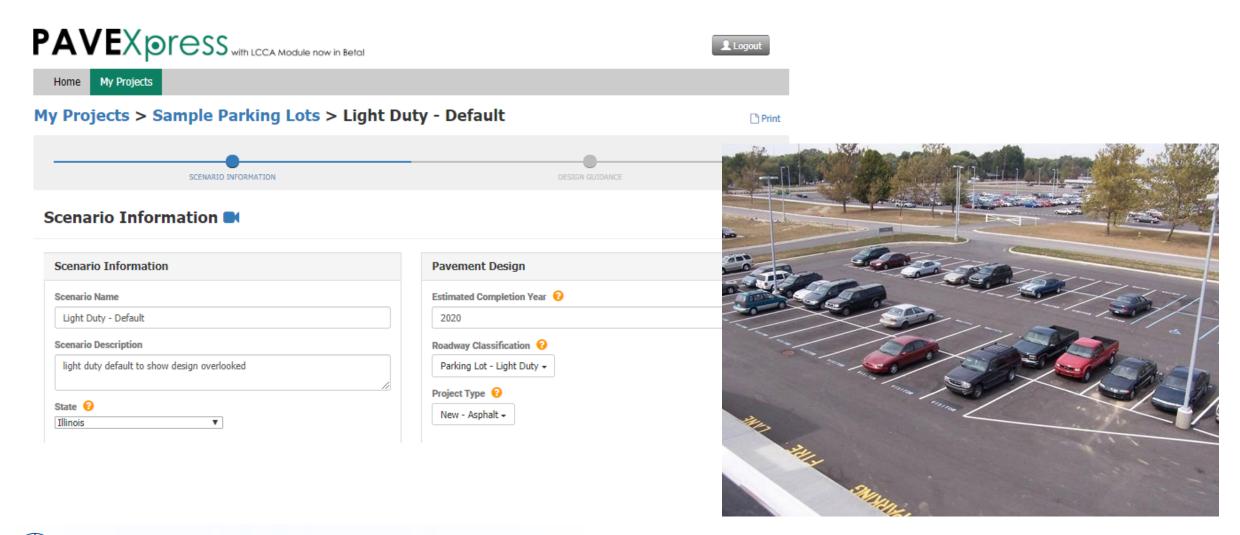
- B.S. Civil Engineering, University of Illinois at Urbana-Champaign
- M.S. Civil Engineering, University of Illinois at Urbana-Champaign
- Principal Engineer, Group Leader (IL Consulting Services)
 - 21 years of consulting engineering experience
 - Emphasis on alternative delivery projects, pavement evaluation and design, and asset management
 - Licensed PE in IL, IN, and CO

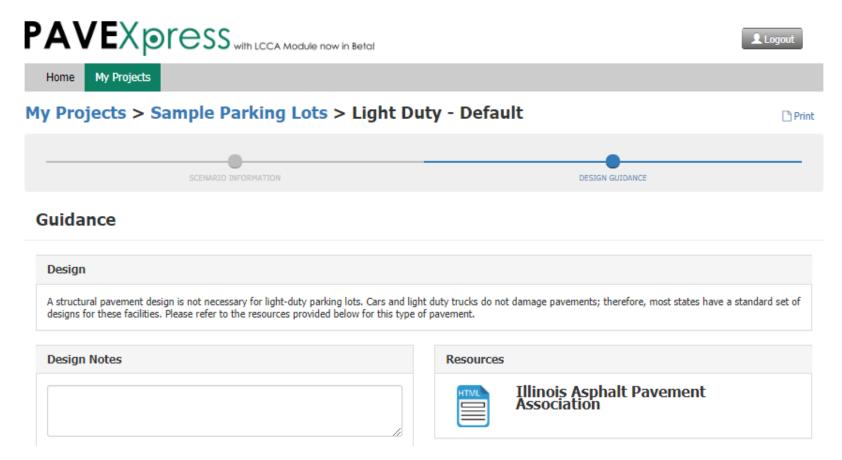
Industrial Parking Lots – Asphalt Pavement Designs

Asphalt Pavement Design Basics

AASHTO '93 Designs

PaveXpress


Mechanistic Design Checks


Light Duty Lot Example

Light Duty Lot Example – No Design Necessary?

IDOT BLR Guidance = 3" HMA 8" Agg Base

Heavy Duty Parking Lot

Drive Lanes

Parking Loaded Containers/Trucks

Garbage Trucks

These can be designed with asphalt materials, but...

- Loads matter!
- Subgrade support matters!
- Drainage matters!

AASHTO '93 – Structural Number (SN)

Required structure to support projected loads for design life

Compute a required thickness (SN) – in inches

Assign material layers with appropriate structural layer coefficients

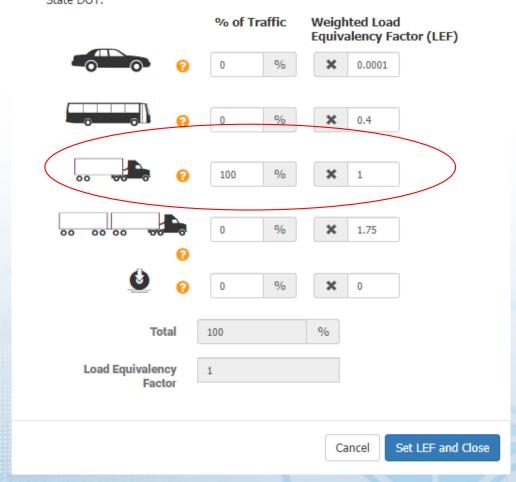
Greater stiffness = greater structural layer coefficient

AASHTO '93 – Structural Number (SN)

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

Where:	W_{18}	=	predicted number of 80 kN (18,000 lb.) ESALs
	Z_{R}	=	standard normal deviate
	S _o	=	combined standard error of the traffic prediction and performance prediction
	SN	=	Structural Number (an index that is indicative of the total pavement thickness required)
		=	a ₁ D ₁ + a ₂ D ₂ m ₂ + a ₃ D ₃ m ₃ +a _i = ithlayer coefficient, D _i = i th layer thickness (inches), m _i = i th layer drainage coefficient
	ΔPSI	=	difference between the initial design serviceability index, pi, and the design terminal serviceability index, pt
	M_R	=	subgrade resilient modulus (in psi)

Source: PavementInteractive.com



Default Truck Factor = 1.0

Assumes blend of loaded/unloaded trucks

Calculate Load Equivalency Factor

Use this dialog to establish the Composite Load Equivalency Factor for your project section. The values are used to then determine the ESALs from the vehicle count provided earlier. Default values suggested are from Washington State DOT.

AASHTO '93

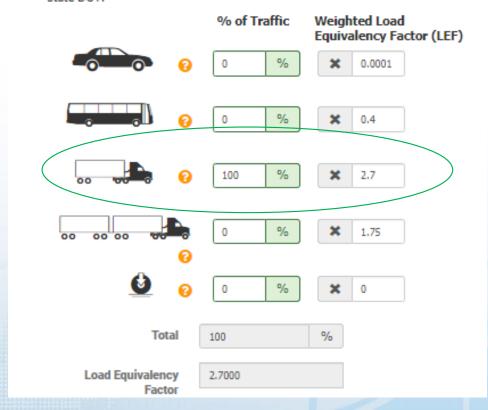
Calculate a Truck Factor!

80,000lb tr	ruck		
16000 sing	0.7		
32000 driv	1		
32000 trail	1		
	E:	SAL/truck	2.7

Table 1. Some Typical Load Equivalency Factors

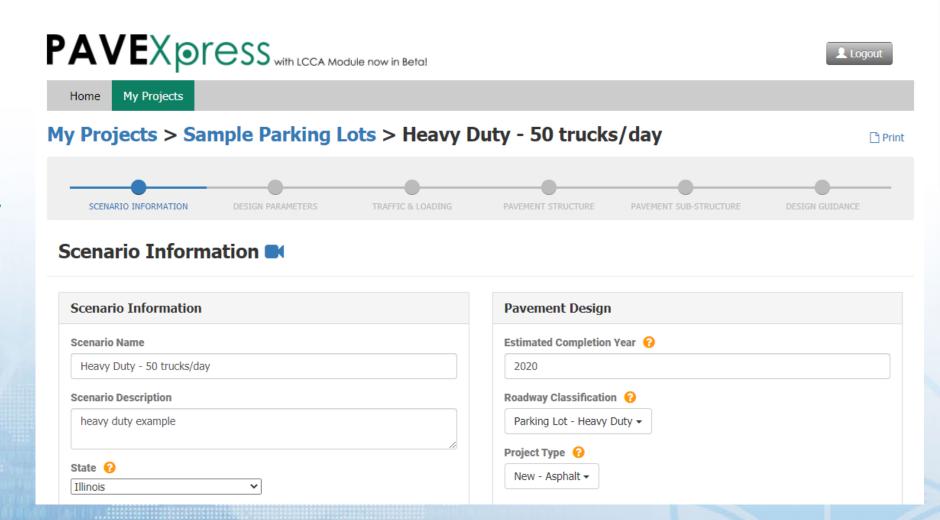
Axle Type (lbs)	Axle Load		Load Equivalency Factor (from AASHTO, 1993)			
	(kN)	(lbs)	Flexible	Rigid		
Single axle	8.9	2,000	0.0003	0.0002		
	44.5	10,000	0.118	0.082		
	62.3	14,000	0.399	0.341		
	80.0	18,000	1.000	1.000		
	89.0	20,000	1.4	1.57		
	133.4	30,000	7.9	8.28		
Tandem axle	8.9	2,000	0.0001	0.0001		
	44.5	10,000	0.011	0.013		
	62.3	14,000	0.042	0.048		
	80.0	18,000	0.109	0.133		
	89.0	20,000	0.162	0.206		
	133.4	30,000	0.703	1.14		
	151.2	34,000	1.11	1.92		
	177.9	40,000	2.06	3.74		
	222.4	50,000	5.03	9.07		

Source: PavementInteractive.com

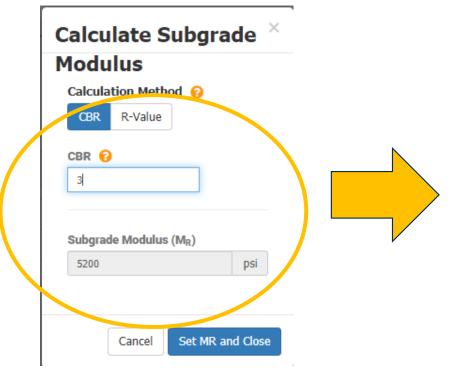


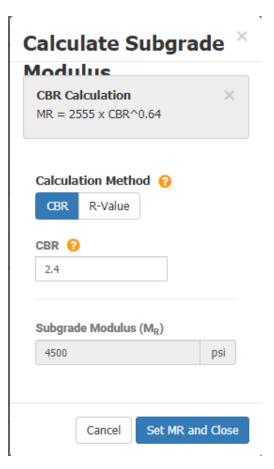
Update Truck Factor

80,000-lb truck = 2.7

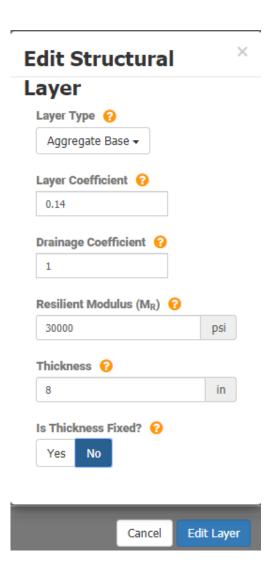

Calculate Load Equivalency Factor

Use this dialog to establish the Composite Load Equivalency Factor for your project section. The values are used to then determine the ESALs from the vehicle count provided earlier. Default values suggested are from Washington State DOT.




This example is for 50 trucks per day

Different CBR Correlation

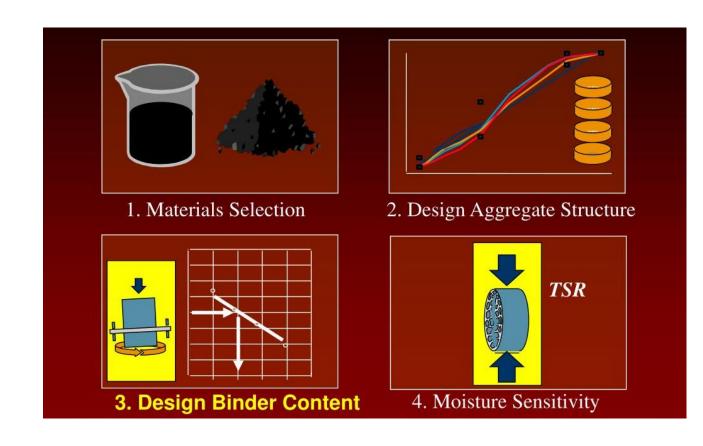


Aggregate Base Properties

Typically IDOT CA-6 (crushed stone base)

We recommend a minimum of 6" of stone base

- More stiffness = better support for pavement
- More stiffness = better construction platform
- Helps with site drainage and separation

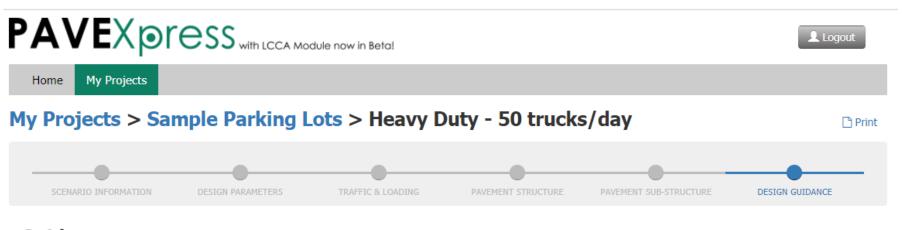


HMA Material Properties

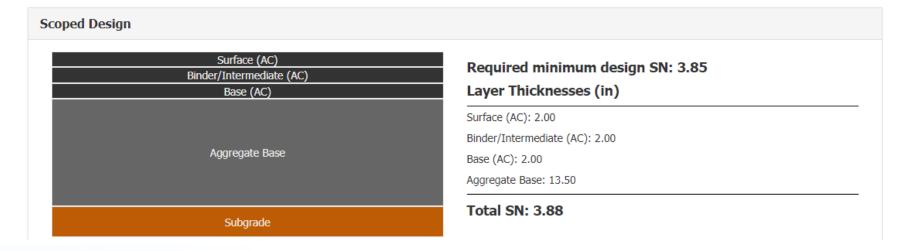
Typical State-mixtures

With Quality Control Testing

Surface $a_i = 0.40-0.44$ Intermediate $a_i = 0.36-0.40$ Base $a_i = 0.36-0.40$



AASHTO '93 – PaveXpress (50 trucks per day)


Results!

2.0" HMA Surface4.0" HMA Base13.5" CA-6

This is A LOT more than 3" over 8"

Guidance

AASHTO '93 Results

AASHTO 93	20-yr MESAL	0-yr MESAL Required SN		HMA Surface (0.40/in)		HMA Binder (0.33/in)		Agg Base (0.13/in)	
50 trucks/day	0.98	3.85	2	0.8	4.0	1.32	13.5	1.76	3.88
100 trucks/day	1.98	4.10	2	0.8	5.0	1.65	13.0	1.69	4.14
150 trucks/day	2.96	4.40	2	0.8	5.5	1.82	14.0	1.82	4.44
200 trucks/day	3.94	4.60	2	0.8	5.5	1.82	15.5	2.02	4.63
240 trucks/day	4.92	4.75	2	0.8	6.0	1.98	15.5	2.02	4.80

Significant structure needed to carry truck traffic

Typical Structures

Depends on truck traffic loading

Bank = Deposit trucks, garbage trucks

Fast food lots = Supply trucks, garbage trucks

Schools = BUSES, garbage trucks, supply trucks for cafeterias

Quiz: why does summer school matter?

Typical Structures – Spec Design?

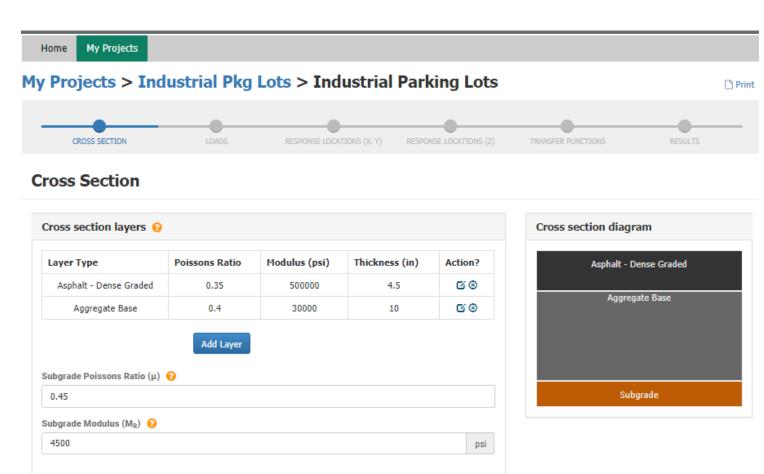
Unknown future tenant

Design parking lots and drive lanes expecting some trucks

50 trucks/day is a good minimum, more is better

Communicate design assumptions to tenant when they lease space!

Responsibility, accountability, defined expectations

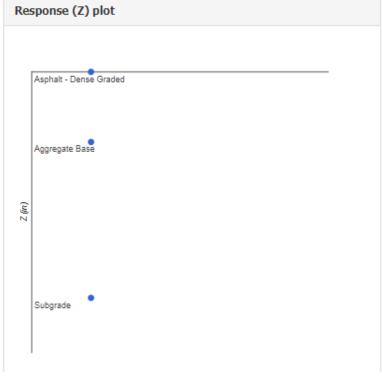


Structural Analysis

Also called Mechanistic Design Check

Layered Elastic Analysis (LEA)




Analysis locations

Desired criteria

- Horizontal strains (fatigue)
- Vertical strains (rutting)

Up Next – Mike Ward, Rabine Paving

Thanks!

